2017年04期

张利伟,姚建新,张立军.豫西地区早三叠世微生物成因沉积构造的微观特征[J].微体古生物学报, 2017, 34(04): 418-427.

ZHANG Liwei,YAO Jianxin,ZHANG Lijun.MICROSCOPIC FEATURES OF MICROBIAL INDUCED SEDIMENTARY STRUCTURES IN THE EARLY TRIASSIC TERRESTRIAL DEPOSITS IN WESTERN HENAN PROVINCE, CHINA[J].Acta Micropalaeontologica Sinica, 2017, 34(04): 418-427.

豫西地区早三叠世微生物成因沉积构造的微观特征
张利伟 1 2 姚建新 3 * 张立军 1
0

+ 作者地址

1河南理工大学资源环境学院, 焦作 454000

2 中国地质科学院地质研究所, 北京 100037

3中国地质科学院地质研究所, 北京 100037

随着微生物沉积学的诞生与发展,地质记录中微生物席活动相关沉积构造已被广泛识别和报道。但是微生物成因沉积构造的判别仍建立在与现代微生物席宏观形态特征的对比与猜测基础之上。微生物成因沉积构造微观特征和直接成因证据的缺乏,使微生物沉积学的进一步发展遇到了严重障碍。豫西地区早三叠世陆相碎屑岩地层中发育丰富的微生物成因沉积构造类型,为微生物成因沉积构造的微观特征研究提供了良好材料。研究显示,微生物成因沉积构造具有特征明显的微观特征。除之前报道的悬浮颗粒、微生物纹层等特征外,本次研究还在光学薄片中发现了圈层结构的微生物扰动颗粒,在扫描电镜下发现了类型多样的微体生物化石。对微生物成因沉积构造微观特征的观察,丰富了微生物成因沉积构造的判别依据,为微生物沉积学发展与应用提供了新的材料和新的视角。
语种: 中文   
基金: 研究由国家自然科学基金(U1204404)、中国地质调查局"全国陆相地层划分对比及海相地层阶完善"地质调查工作项目(...
史晓颖,王新强,蒋干清等, 2008. 贺兰山地区中元古代微生物席成因构造——远古时期微生物群活动的沉积标识. 地质论评, 54 (5): 577-586 冯军,李江海,牛向龙, 2005. 热泉微生物化石的识别研究及其科学意义. 微体古生物学报, 22 (2): 136-142 刘绍龙, 1986. 华北地区大型三叠纪原始沉积盆地的存在. 地质学报, (02): 128-138 刘欣春,陈孝政,叶法丞等, 2010. 川东北二叠系-三叠系界线附近微生物岩微观表面特征观察研究. 古生物学报, 49 (2): 261-268 汤冬杰,史晓颖,李涛等, 2011. 微生物席成因构造形态组合的古环境意义:以华北南缘中-新元古代为例. 地球科学(中国地质大学学报), 36 (06): 1033-1043 李飞,王夏,薛武强等, 2010. 一种新的错时相沉积物——巨鲕及其环境意义. 沉积学报, 28 (3): 585-595 时志强,安红艳,伊海生等, 2011. 上扬子地区早三叠世异常碳酸盐岩的分类与特征. 古地理学报, 13 (1): 1-10 时志强,伊海生,曾德勇等, 2010. 上扬子地区下三叠统飞仙关组一段:大灭绝后从停滞海洋到动荡海洋的沉积记录. 地质论评, 56 (06): 769-780 张利伟,杨文涛,牛永斌, 2014. 河南宜阳地区陆相二叠系-三叠系界线附近微生物成因沉积构造特征及意义. 地质论评, 60 (05): 1051-1060 张利伟,洪天求,贾志海, 2011. 安徽巢湖北部地区下三叠统和龙山组微生物岩及其意义. 地质科学, 46 (2): 392-403 陈世悦, 2000. 华北地块南部晚古生代-三叠纪盆山耦合关系. 沉积与特提斯地质, 20 (3): 37-43 杨仁超,樊爱萍,韩作振等, 2011. 核形石研究现状与展望. 地球科学进展, 26 (05): 465-474 郑元,吕洪波,章雨旭等, 2009. 山西黎城中元古代砂岩层面多种痕迹特征及成因初析. 地质论评, 55 (01): 1-9 范嘉松,吴亚生, 2004. 从塔北隆起奥陶纪钙藻化石探讨奥陶纪的古环境. 微体古生物学报, 21 (3): 251-266 赵小明,牛志军,童金南等, 2010. 早三叠世生物复苏期的特殊沉积——"错时相"沉积. 沉积学报, 28 (02): 314-323 梅冥相, 2007. 燕山地区中元古代高于庄组非叠层石碳酸盐岩序列的沉积特征及其重要意义. 现代地质, 21 (1): 45-56 梅冥相, 2008. 显生宙罕见的巨鲕及其鲕粒形态多样性的意义:以湖北利川下三叠统大冶组为例. 现代地质, 22 (5): 683-698 梅冥相, 2011. 陆源碎屑岩中微生物诱发的沉积构造的成因类型及其分类体系. 地质论评, 57 (03): 419-436 梅冥相,孟庆芬,刘智荣, 2007. 微生物形成的原生沉积构造研究进展综述. 古地理学报, 9 (4): 353-367 梅冥相,孟庆芬,高金汉, 2007. 前寒武纪海侵砂岩中的微生物砂质碎片: 以北京南口虎峪剖面大红峪组为例. 地学前缘, 14 (2): 197-204 梅冥相,高金汉,孟庆芬, 2006. 从席底构造到第五类原生沉积构造:沉积学中具有重要意义的概念. 现代地质, 20 (3): 413-422 彭兆蒙,吴智平, 2006. 华北地区三叠纪地层发育特征及原始沉积格局分析. 高校地质学报, 12 (03): 343-352 BAUD A, RICHOZ S, PRUSS S, 2007. The lower Triassic anachronistic carbonate facies in space and time. Global and Planetary Change, 55 (1-3): 81-89 BURNE R V, MOORE L S, 1987. Microbialites: organosedimentary deposits of benthic microbial communities. Palaios, 2: 241-254 BURNE R V, MOORE L S, 1993. Microatoll microbialites of Lake Clifton, Western Australia: Morphological analogues of Cryptozoön proliferum Hall, the first formally-named stromatolite. Facies, 29 (1): 149-168 CHEN Shiyue, 2000. The basin-range coupling in southern North China block during the Late Palaeozoic to Triassic. Sedimentary Geology and Tethyan Geology, 20 (3): 37-43 CHEN Z, WANG Y, KERSHAW S et al., 2014. Early Triassic stromatolites in a siliciclastic nearshore setting in northern Perth Basin, Western Australia: Geobiologic features and implications for post-extinction microbial proliferation. Global and Planetary Change, 121: 89-100 CHU D, TONG J, SONG H et al., 2015. Early Triassic wrinkle structures on land: stressed environments and oases for life. Scientific Reports, 5: 10109 DAI H, XING L, MARTY D et al., 2015. Microbially-induced se-dimentary wrinkle structures and possible impact of microbial mats for the enhanced preservation of dinosaur tracks from the Lower Cretaceous Jiaguan Formation near Qijiang (Chongqing, China). Cretaceous Research, 53: 98-109 DECHO A W, 2000. Exopolymer microdomains as a structuring agent for heterogeneity within microbial biofilms. Microbial Sediments, Springer. 9-15 DES MARAIS D J, 2000. When Did Photosynthesis Emerge on Earth? Science, 289 (5485): 1703-1705 EOFF J D, 2014. Suspected microbial-induced sedimentary structures (MISS) in Furongian (Upper Cambrian; Jiangshanian, Sunwaptan) strata of the Upper Mississippi Valley. Facies: 1-14 ERIKSSON P G, CATUNEANU O, SARKAR S et al., 2005. Patterns of sedimentation in the Precambrian. Sedimentary Geology, 176 (1): 17-42 FAN Jiasong, WU Yasheng, 2004. Palaeoenvironmental analyses of Ordovician rocks in the northern uplift of Tarim Basin in terms of calcareous algae and cyanobacteria. Acta Micropalaeontologica Sinica, 21 (3): 251-266 FARMER J D, 2000. Hydrothermal systems: doorways to early biosphere evolution. GSA Today, 10 (7): 1-9 FENG Jun, LI Jianghai, NIU Xianglong, 2005. The Identification of the Microbe Fossil and Its Scientific Implication. Acta Micropalaeontologica Sinica, 22 (2): 136-142 FOLK R L, 1993. SEM imaging of bacteria and nannobacteria in carbonate sediments and rocks. Journal of Sedimentary Petrology, 63: 990 GERDES G, KLENKE T, NOFFKE N, 2000. Microbial signatures in peritidal siliciclastic sediments: a catalogue. Sedimentology, 47 (2): 279-308 GROTZINGER J P, KNOLL A H, 1999. Stromatolites in Precambrian carbonates: evolutionary mileposts or environmental dipsticks? Annual review of earth and planetary sciences, 27 (1): 313-358 GUERRERO R, PIQUERAS M, BERLANGA M, 2002. Microbial mats and the search for minimal ecosystems. International Microbiology, 5 (4): 177-188 HAGADORN J W, PFLVGER F, BOTTJER D J, 1999. Unexplored microbial worlds. Palaios, 14: 1-2 HOFMANN H J, GREY K, HICKMAN A H et al., 1999. Origin of 3.45 Ga coniform stromatolites in Warrawoona group, Western Australia. Geological Society of America Bulletin, 111 (8): 1256-1262 JøRGENSEN B B, 2001. Biogeochemistry: Space for hydrogen. Nature, 412 (6844): 286-289 KASTING J F, 1991. Box models for the evolution of atmospheric oxygen: an update. Global and planetary change, 5 (1): 125-131 KASTING J F, HOWARD M T, 2006. Atmospheric composition and climate on the early Earth. Philosophical Transactions of the Royal Society B: Biological Sciences, 361 (1474): 1733-1742 KNORRE H V, KRUMBEIN W E, 2000. Bacterial calcification. Microbial sediments, Springer. 25-31 LI Fei, WANG Xia, XUE Wuqiang et al., 2010. Origin and Environmental Significance of Giant Ooids in the Early Triassic: a new kind of anachronistic facies. Acta Sedimentologica Sinica, 28 (3): 585-595 LIU Shaolong, 1986. The Existence of a Large-scale Triassic Sedimentary Basin in North China. Acta Geological Sinica, (02): 128-138 LIU Xinchun, CHEN Xiaozheng, YE Facheng et al., 2010. Surface microstructures of the microbialite around Permo-Triassic boundary, NE Sichuan, China. Acta Palaeontologica Sinica, 49 (2): 261-268 MARIOTTI G, PRUSS S B, PERRON J T et al., 2014. Microbial shaping of sedimentary wrinkle structures. Nature Geoscience: 1-5 MATA S A, BOTTJER D J, 2009. The paleoenvironmental distribution of Phanerozoic wrinkle structures. Earth-Science Reviews, (96): 181-195 MEI Mingxiang, 2007. Sedmientary Features and their Implication for the Depositional Succession of Non-stromatolitic Carbonates, Mesoproterozoic Gaoyuzhuang Formation in Yanshan Area of North China. Geoscience, 21 (1): 45-56 MEI Mingxiang, 2008. Implication for the Unusual Giant Oolites of the Phanerozoic and their Morphological Diversity: a Case Study from the Triassic Daye Formation at the Lichuan Section in Hubei Province, South China. Geoscience, 22 (5): 683-698 MEI Mingxiang, 2011. Genetic Types and their Classification for the Microbial Induced Sedimentary Structure within Terrigenous Clastic rocks. Geological Review, 57 (03): 419-436 MEI Mingxiang, GAO Jinhan, MENG Qingfen, 2006. From Matground Structures to the Primary Sedimentary Structures of a Fifth Category: Significant Concepts on Sedimentology. Geoscience, 20 (3): 413-422 MEI Mingxiang, MENG Qingfen, GAO Jinhan, 2007. Microbial sand chips in transgressive sandstones of the Precambrian: an example from the Dahongyu Formation at the Huyu Section of the Nankou Town in Beijing. Earth Science Frontiers, 14 (2): 197-204 MEI Mingxiang, MENG Qingfen, LIU Zhirong, 2007. Overview of Advances in Studies of Primary Sedimentary Structures formed by Microbes. Journal of Palaeogeography, 9 (4): 353-367 MERZ M U, 1992. The biology of carbonate precipitation by cyanobacteria. Facies, 26 (1): 81-101 MERZ PREIβ M, 2000. Calcification in cyanobacteria. Microbial sediments, Springer. 50-56 NOFFKE N, BEUKES N, GUTZMER J et al., 2006. Spatial and temporal distribution of microbially induced sedimentary structures: a case study from siliciclastic storm deposits of the 2.9 Ga Witwatersrand Supergroup, South Africa. Precambrian Research, 146 (1-2): 35-44 NOFFKE N, GERDES G, KLENKE T et al., 2001. Microbially induced sedimentary structures: a new category within the classification of primary sedimentary structures. Journal of Sedimentary Research, 71 (5): 649-656 NOFFKE N, KNOLL A H, GROTZINGER J P, 2002. Sedimentary controls on the formation and preservation of microbial mats in siliciclastic deposits: a case study from the Upper Neopro-terozoic Nama Group, Namibia. Palaios, 17 (6): 533-544 PENG Zhaomeng, WU Zhiping, 2006. Development Features of Triassic Strata and Analysis of Original Sedimnetary Pattern in North China. Geological Journal of China Universities, 12 (03): 343-352 PENTECOST A, 1991. Calcification processes in algae and cyanobacteria. Calcareous algae and stromatolites, Springer. 3-20 PFLUEGER F, 1999. Matground structures and redox facies. Palaios, 14 (1): 25-39 PORADA H, GHERGUT J, 2008. Kinneyia-type wrinkle structures-critical review and model of formation. Palaios, 23 (2): 65-77 PRAVE A R, 2002. Life on land in the Proterozoic: evidence from the Torridonian rocks of northwest Scotland. Geology, 30 (9): 811-814 PRUSS S, FRAISER M, BOTTJER D J, 2004. Proliferation of Early Triassic wrinkle structures: implications for environmental stress following the end-Permian mass extinction. Geology, 32 (5): 461 READING H G, 2009. Sedimentary environments: processes, facies and stratigraphy. John Wiley & Sons: 1-688 RIDING R E, AWRAMIK S M, 2000. Microbial Sediments. Springer: 1-331 SARKAR S, BANERJEE S, ERIKSSON P G et al., 2005. Microbial mat control on siliciclastic Precambrian sequence stratigraphic architecture: examples from India. Sedimentary Geology, 176 (1): 195-209 SARKAR S, BANERJEE S, SAMANTA P et al., 2006. Microbial mat-induced sedimentary structures in siliciclastic sediments: examples from the 1.6 Ga Chorhat Sandstone, Vindhyan Supergroup, MP, India. Journal of Earth System Science, 115 (1): 49-60 SCHIEBER J, 1999. Microbial mats in terrigenous clastics: the challenge of identification in the rock record. Palaios, 14 (1): 3-12 SCHIEBER J, 2004. Microbial mats in the siliciclastic rock record: a summary of diagnostic features. The precambrian earth: tempos and events. Developments in Precambrian Geology, 12: 663-673 SCHIEBER J, 2007. Microbial mats on muddy substrates-examples of possible sedimentary features and underlying processes. SCHIEBER J, BOSE P K, ERIKSSON P G et al.(eds.): Atlas of Microbial Mat Features Preserved Within the Siliciclastic Rock record, 1st. Oxford:Elsevier. 117-134 SCHIEBER J, BOSE P K, ERIKSSON P G et al., 2007. Atlas of microbial mat features preserved within the siliciclastic rock record. 1st ed. Oxford: Elsevier: 1-324 SCHOPF J W, 2006. Fossil evidence of Archaean life. Philosophical Transactions of the Royal Society B: Biological Sciences, 361 (1470): 869-885 SHI X Y, ZHANG C H, JIANG G Q et al., 2008. Microbial Mats in the Mesoproterozoic Carbonates of the North China Platform and Their Potential for Hydrocarbon Generation. Journal of China University of Geosciences, 19 (5): 549-566 SHI Xiaoying, WANG Xinqiang, JIANG Ganqing et al., 2008. Pervassive Microbial Mat Colonization on Mesoproterozoic Peritidal Siliciclastic Substrates: an example from the Huangqikou Formation (ca 1.6 Ga) in Helan Mountains, NW China. Geolo-gical Review, 54 (5): 577-586 SHI Zhiqiang, AN Hongyan, YI Haisheng et al., 2011. Classification and characters of the Early Triassic anomalous carbonate rocks in Upper Yangtze Area. Journal of Palaeogeography, 13 (1): 1-10 SHI Zhiqiang, YI Haisheng, ZENG Deyong et al., 2010. The Lowest Member of Lower Triassic Feixianguan Formation in Upper Yangtze Region: sedimentary Records from Sluggish Water to Turbulent Ocean after the Mass Extinction. Geological Review, 56 (06): 769-780 STOLZ J F, 2000. Structure of microbial mats and biofilms. Microbial sediments, Springer. 1-8 TANG Dongjie, SHI Xiaoying, LI Tao et al., 2011. Morphologic Association of Microbially Induced Sedimentary Structures as Paleoenvironment Indicator: an Example from Meso-to Neo-Proterozoic Siliciclastics of Southern North China Platform. Earth Science(Journal of China University of Geosciences), 36 (06): 1033-1043 THOMPSON J B, FERRIS F G, 1990. Cyanobacterial precipitation of gypsum, calcite, and magnesite from natural alkaline lake water. Geology, 18 (10): 995-998 TICE M M, LOWE D R, 2004. Photosynthetic microbial mats in the 3,416-Myr-old ocean. Nature, 431 (7008): 549-552 TICE M M, LOWE D R, 2006. Hydrogen-based carbon fixation in the earliest known photosynthetic organisms. Geology, 34 (1): 37-40 climatology, Palaeoecology, 219 (1): 87-100 WESTALL F, BONI L, GUERZONI E, 1995. The experimental silicification of microorganisms. Palaeontology, 38 (3): 495-528 WESTALL F, BRACK A, HOFMANN B et al., 2000. An ESA study for the search for life on Mars. Planetary and Space Science, 48 (2-3): 181-202 WESTALL F, de WIT M J, DANN J et al., 2001. Early Archean fossil bacteria and biofilms in hydrothermally-influenced sediments from the Barberton greenstone belt, South Africa. Precambrian Research, 106 (1): 93-116 WOODS A D, BAUD A, 2008. Anachronistic facies from a drowned Lower Triassic carbonate platform: Lower member of the Alwa Formation (Ba'id Exotic), Oman Mountains. Sedimentary Geo-logy, 209 (1-4): 1-14 YANG Renchao, FAN Aiping, HAN Zuozhen et al., 2011. Status and Prospect of Studies on Oncoid. Advances in Earth Science, 26 (05): 465-474 ZHANG Liwei, HONG Tianqiu, JIA Zhihai, 2011. Microbialites and its significances from the Triassic Helongshan Formation in Chaohu Anhui Province,south China Lower area. Chinese Journal of Geology, 46 (2): 392-403 ZHANG Liwei, YANG Wentao, NIU Yongbin, 2014. Characteristic and Geological Significance of Microbially Induced Sedimentary Structures (MISS) in Terrestrial P-T Boundary in Western Henan. Geological Review, 60 (05): 1051-1060 ZHAO X M, TONG J N, YAO H Z et al., 2008. Anachronistic facies in the Lower Triassic of South China and their implications to the ecosystems during the recovery time. Science in China Series D-Earth Sciences, 51 (11): 1646-1657 ZHAO Xiaoming, NIU Zhijun, TONG Jinnan et al., 2010. The Distinctive Sediments in the Early Triassic Recovery Time:"Anachronistic Facies". Acta Sedimentologica Sinica, 28 (02): 314-323 ZHENG Yuan, LV HongBo, ZHANG Yuxu et al., 2009. Miscellaneous Traces on the Bedding Planes of Mezoproterozoic Sandstones in Licheng, Shanxi: Characteristics and Origin Analysis. Geological Review, 55 (01): 1-9

erweima erweima 版权所有 © 《微体古生物学报》编辑部 电话:025-83282122 通讯地址:南京市北京东路39号