2017年02期

史宇坤.ENREF 33形态测量学(Morphometrics)常用方法及其在微体古生物学中的应用[J].微体古生物学报, 2017, 34(02): 179-191.

SHI Yukun.INTRODUCTION OF MORPHOMETRICS AND A CASE STUDY ON FUSULINID FORAMINIFERA[J].Acta Micropalaeontologica Sinica, 2017, 34(02): 179-191.

ENREF 33形态测量学(Morphometrics)常用方法及其在微体古生物学中的应用
史宇坤 1 2 *
0

+ 作者地址

1南京大学生物演化与环境科教融合中心, 南京 210023

2 现代古生物学与地层学国家重点实验室, 南京 210008

形态测量学用定量化的方法和手段描述、研究对象形态特征。几何形态测量学是形态测量学的分支,用界标点或轮廓线等标识研究对象的形态,并运用多变量运算进行量化分析和判别。形态测量学方法在生物学与古生物学领域的应用日益广泛,在生物的个体发育、系统演化、类群判别等方面均可发挥重要作用。本文重点介绍了目前在形态测量学中常用的数据类型、分析方法与步骤,即线性距离、界标点、轮廓线等数据类型的获取,普鲁克迭加、傅里叶转换、特征形状分析与增强特征形状分析等数据转换方法,以及主变量分析、典型变量分析等常用多变量线性回归方法的原理与分析过程。选择以 类有孔虫个体发育与类群鉴定中几何形态测量学的应用为例,解释最常用的多变量线性回归方法——主成分分析与典型变量分析的应用与结果剖析。
语种: 中文   
基金: 国家自然科学基金项目(批准号:41372008),现代古生物学与地层学国家重点实验室开放基金(编号:133110)和...
张元动, 1994. 形态统计学——一门新兴的应用性学科. 古生物学报, 33 (5):651-652 盛金章, 张遴信, 王建华, 1988. 类.北京:科学出版社.1-240 ADAMS D C, ROHLF F J, SLICE D E, 2013. A field comes of age:geometric morphometrics in the 21st century. Hystrix-Italian Journal of Mammalogy, 24:7-14 BELLMAN R, 1957.Dynamic programming.Princeton University Press.1-151 BOOKSTEIN F L, 1986. Size and shape spaces for landmark data in two dimensions. Statistical Science, 181-222 BOOKSTEIN F L, 1991. Morphometric tools for landmark data:geometry and biology. Cambridge University Press.1-435 BOOKSTEIN F L, 1996. Biometrics, biomathematics and the morphometric synthesis.Bulletin of Mathematical Biology, 58:313-365 BOOKSTEIN F L, 1997. Landmark methods for forms without landmarks:morphometrics of group differences in outline shape. Medical Image Analysis, 1:225-243 CAMPBELL N, ATCHLEY W R, 1981. The geometry of canonical variate analysis. Systematic Biology, 30:268-280 CHEN Y, NEUBAUER T A, KRYSTYN L et al., 2016. Allometry in Anisian (Middle Triassic) segminiplanate conodonts and its implications for conodont taxonomy.Palaeontology, 59:725-741 GIARDINA C R, KUHL F P, 1977. Accuracy of curve approximation by harmonically related vectors with elliptical loci.Compu-ter Graphics and Image Processing, 6:277-285 GOWER J, 1971.Statistical methods of comparing different multivariate analyses of the same data.Mathematics in the Archaeological and Historical Sciences, 138-149 HAMMER O, HARPER D A T, 2006.Paleontological Data Analysis.Blackwell Publishing.1-351 HUXLEY J, 1932.Problems of relative growth.London:Methuen & Co. LTD.1-276 KEMP R, 2012. Form and texture analysis of butterfly wings.Master Degree Thesis of Imperial College.1-28 KENDALL D G, 1984. Shape manifolds, procrustean metrics, and complex projective spaces. Bulletin of the London Mathematical Society, 16:81-121 KUHL F P, GIARDINA C R, 1982. Elliptic Fourier features of a closed contour. Computer Graphics and Image Processing, 18:236-258 LOHMANN G, 1983. Eigenshape analysis of microfossils:a general morphometric procedure for describing changes in shape. Journal of the International Association for Mathematical Geology, 15:659-672 MACLEOD N, 1999. Generalizing and extending the eigenshape method of shape space visualization and analysis. Paleobiology, 25:107-138 MACLEOD N, 2002.Geometric morphometrics and geological shape-classification systems. Earth-Science Reviews, 59:27-47 MACLEOD N, 2004.Prospectus & Regressions 1.Palaeontological Association Newsletter, 55:28-36 MACLEOD N, 2005a.Factor analysis. Palaeontological Association Newsletter, 60:38-51 MACLEOD N, 2005b.Principal components analysis (eigenanalysis & regression 5).Palaeontological Association Newsletter, 59:42-54 MACLEOD N, 2007. Groups Ⅱ. Palaeontological Association New-sletter, 65:36-49 MACLEOD N, 2009a. Shape theory. Palaeontological Association Newsletter, 71:34-47 MACLEOD N, 2009b. Who is Procrustes and what has he done with my data. Palaeontological Association Newsletter, 70:21-36 MACLEOD N, 2011a. The centre cannot hold I:Z-R Fourier analysis. Palaeontological Association Newsletter, 78:35-45 MACLEOD N, 2011b.Semilandmarks and radial Fourier analysis.Palaeontological Association Newsletter, 76:25-42 MACLEOD N, 2012a. The centre cannot hold Ⅱ:elliptical Fourier analysis. Palaeontological Association Newsletter, 79:29-42 MACLEOD N, 2012b.Going round the bend Ⅱ:extended eigenshape analysis.Palaeontological Association Newsletter, 81:23-39 MACLEOD N, 2012c.Going round the bend:eigenshape analysis I. Palaeontological Association Newsletter, 80:32-48 MACLEOD N, 2013.Landmarks and semilandmarks:differences without meaning and meaning without difference.Palaeontological Association Newsletter, 82:32-43 MACLEOD N, CARR T, 1987. Morphometrics and the analysis of shape in conodonts.In:Ronald (ed.), Conodonts:Investigative Techniques and Applications. Chichester:Ellis Horwood Limi-ted. 168-187 MACLEOD N, KIREGER J, JONES K E, 2013. Geometric morphometric approaches to acoustic signal analysis in mammalian biology. Hystrix, the Italian Journal of Mammalogy, 24:110-125 MAIORINO L, FARKE A A, KOTSAKIS T et al., 2013. Is torosaurus triceratops? Geometric morphometric evidence of late Maastrichtian ceratopsid dinosaurs.Plos One, 8:e81608 MITTEROECKER P, BOOKSTEIN F, 2011. Linear discrimination, ordination, and the visualization of selection gradients in modern morphometrics. Evolutionary Biology, 38:100-114 POST J R, PARKINSON E, 2001. Energy allocation strategy in young fish:allometry and survival. Ecology, 82:1040-1051 ROHLF F J, SLICE D, 1990. Extensions of the Procrustes method for the optimal superimposition of landmarks. Systematic Zoolo-gy, 39:40-59 SHENG J I, ZHANG L X, WANG J H, 1988. Fusnlinids. Beijing:Science Press.1-240 SHI Y K, MACLEOD N, 2016. Identification of life-history stages in fusulinid foraminifera. Marine Micropaleontology, 122:87-98 SIEGEL A F, BENSON R H, 1982. A robust comparison of biological shapes. Biometrics, 341-350 SNEATH P H A, 1967. Trend-surface analysis of transformation grids. Journal of Zoology, 151:65-122 SUHR D D, 2005. Principal component analysis vs. exploratory factor analysis. SUGI 30 proceedings, 203:230 VIZCAINO S F, BARGO M S, 1998. The masticatory apparatus of the armadillo Eutatus (Mammalia, Cingulata) and some allied genera:paleobiology and evolution. Paleobiology, 24:371- 383 ZAHN C T, ROSKIES R Z, 1972. Fourier descriptors for plane closed curves. IEEE Transactions on computers, 100:269-281 ZELDITCH M L, SWIDERSKI D L, SHEETS H D, 2004. Geometric morphometrics for biologists:a primer.Academic Press.1-443 ZHANG Y D, 1994. An introduction to morphometrics. Acta Palaeontologica Sinica, 33 (5):651-652

erweima erweima 版权所有 © 《微体古生物学报》编辑部 电话:025-83282122 通讯地址:南京市北京东路39号